- Associate Professor
- Data Science & Artificial Intelligence
- Education
- 2011 — 2012
PostDoc in Information Analytics
IBM Research - 2008 — 2011
Master of Adv. Studies in Management, Technology and Innovation
ETH Zurich - 2007 — 2011
PhD in Computer Science
ETH Zurich - 2000 — 2004
MSc. in Computer Science
ETH Zürich - Career
- since 2016
Assistant Professor in Information Systems
University of Liechtenstein - since 2015
Lecturer
University of Zurich - 2014 — 2016
Scientist
ABB Corporate Research - since 2013
Data Analyst
Zurich Insurances - 2005 — 2006
Software Engineer
AutoForm Engineering
- Schedule for SS 24
- _Kick-Off Research Seminar - Marketplace - WS 24/25 (Introduction) Laskov, Schneider, Hacker, Gau, Apruzzese, Schenk, van Giffen
- Artificial Intelligence and Deep Learning (lecture) (Lecture) Schneider
- C19 Artificial Intelligence and Deep Learning (Module)
- C19 Data Science (Module)
- C21_Research Methods I (IMIT) (Lecture) Laskov, Hacker, Schenk, Schneider, Gau
- Data Science (lecture) (Lecture) Schneider
- EM LLM WSR: Cybercrime I: Angriffe auf Informationssysteme (Lecture) Divjak, Schneider
- Master's thesis (Thesis) Laskov, Schneider, Hacker, Schenk, Apruzzese, Gau
- Research Colloquium (Seminar) Schneider
- Research Colloquium (Module/Course/Examination)
- Research Methods in Information Systems (Module/Course/Examination)
- Research Seminar (Seminar) Laskov, Gau, Schenk, Schneider, Apruzzese, van Giffen
- ZS BF 24 Modul 4: Financial Technology (Seminar) Schneider
- ZS DLO 24: Modul 1 Financial Industry 4.0: Digitale Transformation & neue Geschäftsmodelle (Lecture) Burtscher, Schneider
- Beyond Correlations: Leveraging Generative AI for Causal Machine Learning
- FFF-Förderprojekt, November 2024 until October 2026
This project seeks to address the significant limitations of deep learning (DL) models in causal explainability and robustness in out-of-distribution contexts by exploring the integration of ... more ...
- Opening the Black Box of Music Royalties with Machine Learning
- Innosuisse, April 2024 until January 2026
The music industry is facing a growing challenge: unpaid copyright royalties are expected to soon reach nearly $8 billion annually, up from $2.5 billion currently. In a groundbreaking initiative to ... more ...
- High-Quality Machine Learning solution to translate spoken German dialect into Official German ("Hochdeutsch")
- Preproposal PhD-Thesis, since February 2024
As part of the research work, a solution based on machine learning and NLP - natural language processing - should be developed that can automatically translate spoken German dialect into Official ... more ...
- A platform for tracking, predicting, and maintaining the Health of Batteries powering IoT devices
- PhD-Thesis, since December 2023
The dissertation centers around the development of a platform dedicated to monitoring, predicting, and sustaining the health of batteries that power Internet of Things (IoT) devices. It emphasizes ... more ...
- Large Language Models - Autograding & Governance for businesses
- FFF-Förderprojekt, September 2023 until July 2025
This project aims to investigate the potential of large language models (LLMs), specifically ChatGPT, in two areas: exam grading support and governance of LLMs in an industrial context. The first ... more ...
- Towards Trustworthy AI: Validating & Explaining AI Models and Decisions
- FFF-Förderprojekt, November 2021 until December 2022 (finished)
Digitalization and innovation promise to ease our daily lives. Both of these trends are heavily driven by technologies, models, and algorithms from the field of Artificial Intelligence (AI). Despite ... more ...
- Performance Management und Bewertungen mit Process Mining und Big Data
- FL Innovationscheck, April 2021 until September 2021 (finished)
Im Bereich Corporate Finance zeichnet sich ein zunehmender Trend zur Einbeziehung von Daten für das Performance Management und zur Unternehmensbewertung ab. Insbesondere spielen neue Verfahren zur ... more ...
- Large Scale Big Data Pattern Mining
- Innosuisse, January 2019 until March 2021 (finished)
Das Projektziel ist die Weiterentwicklung von neuen intelligenten Analysefunktionen aus dem Gebiet des maschinellen Lernens. Unternehmen arbeiten heute in einem komplexen Umfeld, in dem eine Vielzahl ... more ...
- Virtual Reality in Architecture
- FFF-Förderprojekt, June 2018 until May 2020 (finished)
Virtual reality allows to perceive landscapes, cities and ``space'' in general more intensely and accurately than ordinary technologies that use conventional models of buildings and landscapes shown ... more ...
- Data driven company valuation and IPO performance prediction
- FFF-Förderprojekt, April 2018 until March 2020 (finished)
An important part of every initial public offering (IPO) is an accurate valuation of the company planning to sell shares. Most established valuation methods only take hard financial facts into ... more ...
- Mustererkennung in grossen Datenmengen
- FL Innovationscheck, December 2017 until June 2018 (finished)
Ziel des (Vor)projektes war es komplexe Datenanalyse Methoden zu evaluieren. Dies wurde anhand Zeitreihenanalyse von Sensordaten zur Vorhersage von Maschinenausfällen durchgeführt. Hierzu wurde ein ... more ...
- Text Mining for Curriculum Design for Multiple Information Systems Disciplines
- ERASMUS, October 2017 until September 2019 (finished)
Curriculum design concerns all universities in Europe. Traditionally, it is performed manually by academics with years of experience in the design process. Decisions about what content to include in ... more ...
- Enterprise Content Analytics
- FFF-Förderprojekt, March 2015 until February 2018 (finished)
The aim of the project is to evaluate the applicability of data-analytics methods for analyzing unstructured content in enterprise contexts. As such, the project is located at the intersection of ... more ...
Schneider, J. (in press). Correlated Initialization for Correlated Data. Neural Processing Letters.
moreSchneider, J., Meske, C., & Kuss, P. (2024). Foundation Models. Business & Information Systems Engineering. (ABDC_2022: A; ABS_2021: 2; VHB_3: B)
moreHardeck, I., Inger, K. K., Moore, R. D., & Schneider, J. (2024). The impact of tax avoidance and environmental performance on tax disclosure in CSR reports. Journal of the American Taxation Association, 46(4), 83-111. (ABDC_2022: A; ABS_2021: 3; VHB_3: B)
moreAltheimer, J., & Schneider, J. (2024). Smart-watch-based construction worker activity recognition with hand-held power tools. Automation in Construction, 167. (ABDC_2022: A*)
moreBokstaller, J., Schneider, J., Lux, S., & vom Brocke, J. (2024). Battery Health Index: Combination of Physical and ML-Based SoH for Continuous Health Tracking. IEEE Internet of Things Journal.
moreLongo, L., Brcic, M., Cabitza, F., Choi, J., Confalonieri, R., Del Ser, J., Guidotti, R., Hayashi, Y., Herrera, F., Holzinger, A., Jiang, R., Khosravi, H., Lecue, F., Malgieri, G., Páez, A., Samek, W., Schneider, J., Speith, T., & Stumpf, S. (2024). Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions. Information Fusion, 106(June).
moreRazgallah, H., Vlachos, M., Ajalloeian, A., Liu, N., Schneider, J., & Steinmann, A. (2024). Using Neural and Graph Neural Recommender Systems to Overcome Choice Overload: Evidence From a Music Education Platform. ACM Transactions on Information Systems, 42(4), 1 - 26. (ABDC_2022: C; VHB_3: B)
moreSchneider, J. (2024). Explainable Generative AI (GenXAI): a survey, conceptualization, and research agenda. Artificial Intelligence Review, 57(289).
moreSchneider, J., & Apruzzese, G. (2023). Dual Adversarial Attacks: Fooling Humans and Classifiers. Journal of Information Security and Applications, 75.
moreSimons, A., Wohlgenannt, I., Zelt, S., Weinmann, M., Schneider, J., & vom Brocke, J. (2023). Intelligence at play: game-based assessment using a virtual-reality application. Virtual Reality, 27, 1827–1843.
moreAbraham, R., Schneider, J., & vom Brocke, J. (2023). A taxonomy of data governance decision domains in data marketplaces. Electronic Markets, 33(22). (ABDC_2022: A; ABS_2021: 2; VHB_3: B)
moreSchneider, J., & Breitinger, F. (2023). Towards AI forensics: Did the artificial intelligence system do it? Journal of Information Security and Applications, 76.
moreSchneider, J., & Vlachos, M. (2023). Reflective-net: learning from explanations. Data Mining and Knowledge Discovery.
moreSchneider, J., Seidel, S., Basalla, M., & vom Brocke, J. (2023). Reuse, Reduce, Support: Design Principles for Green Data Mining. Business & Information Systems Engineering, 65. (ABDC_2022: A; ABS_2021: 2; VHB_3: B)
moreUtama, C., Meske, C., Schneider, J., Schlatmann, R., & Ulbrich, C. (2023). Explainable artificial intelligence for photovoltaic fault detection: A comparison of instruments. Solar Energy, 249, 139-151.
moreMeske, C., Bunde, E., Schneider, J., & Gersch, M. (2022). Explainable artificial intelligence: Objectives, stakeholders and future research opportunities. Information Systems Management, 39(1), 53-63. (ABDC_2022: B; ABS_2021: 2; VHB_3: C)
moreTastemirova, A., Schneider, J., Chandra Kruse, L., Heinzle, S., & vom Brocke, J. (2022). Microexpressions in digital humans: perceived affect, sincerity,and trustworthiness. Electronic Markets, 32, 1603-1620. (ABDC_2022: A; ABS_2021: 2; VHB_3: B)
moreWerner, F., Basalla, M., Schneider, J., Hays, D., & vom Brocke, J. (2021). Blockchain Adoption from an Interorganizational Systems Perspective - A Mixed-Methods Approach. Information Systems Management, 38(2), 135-150. (ABDC_2022: B; ABS_2021: 2; VHB_3: C)
moreHolzwarth, V., Schneider, J., Handali, J., Gisler, J., Hirt, C., Kunz, A., & vom Brocke, J. (2021). Towards estimating affective states in Virtual Reality based on behavioral data. Virtual Reality, 25, 1139–1152.
moreKamm, M., Kucklick, J., Schneider, J., & vom Brocke, J. (2021). Data mining for small shops: Empowering brick-and-mortar stores through BI functionalities of a loyalty program. Information Systems Management, 38(4), 270-286. (ABDC_2022: B; ABS_2021: 2; VHB_3: C)
moreBasalla, M., Schneider, J., Luksik, M., Jaakonmäki, R., & vom Brocke, J. (2021). On Latency of E-Commerce Platforms. Journal of Organizational Computing and Electronic Commerce, 31(1), 1 - 17. (ABDC_2022: A; ABS_2021: 1; VHB_3: C)
moreHacker, J., vom Brocke, J., Handali, J., Otto, M., & Schneider, J. (2020). Virtually in this together – how web-conferencing systems enabled a new virtual togetherness during the COVID-19 crisis. European Journal of Information Systems, 29(5), 563-584. (ABDC_2022: A*; ABS_2021: 4; VHB_3: A)
moreHolzwarth, V., Schneider, J., Kunz, A., & vom Brocke, J. (2019). Data driven value creation in AEC along the building lifecycle. Journal of Physics: Conference Series, 1343(012046).
moreAbraham, R., Schneider, J., & vom Brocke, J. (2019). Data governance: A conceptual framework, structured review, and research agenda. International Journal of Information Management, 49(Dec), 424-438. (ABDC_2022: A*; ABS_2021: 2; VHB_3: C)
morevom Brocke, J., Basalla, M., Kaiser, L. F., Schneider, J., Ragtschaa, S., Batliner-Staber, F., & Dzinic, E. (2018). Own - The Case of a Blockchain Business Model Disrupting the Equity Market. CONTROLLING - Zeitschrift für erfolgsorientierte Unternehmenssteuerung, 30(5), 19-25. (VHB_3: D)
moreSchneider, J., Bernstein, A., vom Brocke, J., Damevski, K., & Shepherd, D. C. (2018). Detecting Plagiarism Based on the Creation Process. IEEE Transactions on Learning Technologies (TLT), 11(3), 348-361.
moreHarris, D. G., Schneider, J., & Su, H.-H. (2018). Distributed (delta 1)-Coloring in Sublogarithmic Rounds. Journal of the ACM, 65(4). (ABDC_2022: C; VHB_3: B)
moreSchneider, J., & Caracas, A. (2017). Robust Speed Measurements with Standard Wireless Devices. IET Wireless Sensor Systems, 7(2), 35-43.
moreSchneider, J., & Vlachos, M. (2017). Scalable Density-Based Clustering with Quality Guarantees using Random Projections. Data Mining and Knowledge Discovery (DMKD), 31(4), 972-1005.
moreBarenboim, L., Elkin, M., Pettie, S., & Schneider, J. (2016). The Locality of Distributed Symmetry Breaking. Journal of the ACM, 63(3). (ABDC_2022: C; VHB_3: B)
moreDamevski, K., Shepherd, D. C., Schneider, J., & Pollock, L. (2016). Mining Sequences of Developer Interactions in Visual Studio for Usage Smells. IEEE Transactions on Software Engineering (TSE), 1(1). (VHB_3: B)
moreVlachos, M., Schneider, J., & Vassiliadis, V. G. (2015). On Data Publishing with Clustering Preservation. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(3).
moreEstler, H., Schneider, J., Nordio, M., Furia, C., & Meyer, B. (2013). Agile vs. Structured Distributed Software Development: A Case Study. Journal on Empirical Software Engineering(EMSE).
moreSchneider, J., Elkin, M., & Wattenhofer, R. (2012). Symmetry Breaking Depending on the Chromatic Number or the Neighborhood Growth. Journal of Theoretical Computer Science (TCS), 6(2), 70-80.
moreSchneider, J., & Wattenhofer, R. (2010). An Optimal Maximal Independent Set Algorithm for Bounded-Independence Graphs. Journal of Distributed Computing, 15(1), 15-26.
more
Schneider, J., & Vlachos, M. (2021). Explaining Neural Networks by Decoding Layer Activations. In P. Abreu, P. Rodrigues, A. Fernández & J. Gama (Eds.), Advances in Intelligent Data Analysis XIX. IDA 2021. (Vol. 12695, ): Springer.
more
Johny, L., Dechant, H., & Schneider, J. (2024). Taking Data Scientists Out-of-the-Loop in Knowledge Intense Analytics - A Case Study for Product Designs. Paper presented at the European Conference on Information Systems 2024, Paphos, Cyprus. (VHB_3: B)
moreSchneider, J., Schenk, B., & Niklaus, C. (2024). Towards LLM-Based Autograding for Short Textual Answers. Paper presented at the 16th International Conference on Computer Supported Education.
moreSchneider, J., Chandra Kruse, L., & Seeber, I. (2024). Validity Claims in Children-AI discurse: Experiment with ChatGPT. Paper presented at the 16th International Conference on Computer Supported Education.
moreSchneider, J., & Prabhushankar, M. (2024). Understanding and Leveraging the Learning Phases of Neural Networks. Paper presented at the AAAI Conference on Artificial Intelligence.
moreApruzzese, G., Laskov, P., & Schneider, J. (2023). SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection. Paper presented at the IEEE European Symposium on Security and Privacy (IEEE EuroS&P), Delft, Netherlands.
moreGrisold, T., & Schneider, J. (2023). Dynamics of Human-AI Delegation in Organizational Routines. Paper presented at the Rising like a Phoenix: Emerging from the Pandemic and Reshaping Human Endeavors with Digital Technologies ICIS 2023, Hyderabad, India. (VHB_3: A)
moreSchneider, J., Eisenhardt, D., Utama, C., & Meske, C. (2023). Impact of data collection on ML models: Analyzing differences of biases between low- vs. high-skilled annotators. Paper presented at the 18th International Conference on Wirtschaftsinformatik, Paderborn, Germany. (VHB_3: C)
moreSchneider, J., Meske, C., & Bikic, A. (2023). How individuals can shape AI through data - An AI literacy and morality perspective. Paper presented at the European Conference on Information Systems, Kristiansand, Norway. (VHB_3: B)
moreSchäfer, M., Schneider, J., Drechsler, K., & vom Brocke, J. (2022). AI Governance: Are Chief AI Officers and AI Risk Officers needed?. Paper presented at the 30th European Conference on Information Systems, Timisoara, Rumania. (VHB_3: B)
moreSchneider, J., & Apruzzese, G. (2022). Concept-based Adversarial Attacks: Tricking Classifiers and Humans alike. Paper presented at the IEEE Symposium on Security and Privacy: Deep Learning and Security Workshop (SP DLS).
moreHandali, J. P., Schneider, J., Gau, M., Holzwarth, V., & vom Brocke, J. (2021). Visual Complexity and Scene Recognition: How Low Can You Go?. Paper presented at the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Online.
moreHolzwarth, V., Steiner S., Schneider J., vom Brocke J., & Kunz A. (2021). BIM-Enabled Issue and Progress Tracking Services Using Mixed Reality. Paper presented at the Smart Services Summit. Progress in IS.
moreSchneider, J., Hacker, J., Litvinova, J., Handali, J., & vom Brocke, J. (2021). Exploring the Use of Backgrounds in Webconferencing with Image and Text Analysis. Paper presented at the International Conference on Information Systems, Austin, Texas. (VHB_3: A)
moreKamm, M., Gau, M., Schneider, J., & Vom Brocke, J. (2020). Smart Waste Collection Processes-A Case Study about Smart Device Implementation. Paper presented at the Hawaii International Conference on System Sciences, Hawaii. (VHB_3: C)
moreKucklick, J.-P., Kamm, M., Schneider, J., & Vom Brocke, J. (2020). Extending Loyalty Programs with BI Functionalities A Case Study for Brick-and-Mortar Stores. Paper presented at the 53 rd Hawaii International Conference on System Sciences 2020, Hawaii. (VHB_3: C)
moreHandali, J. P., Schneider, J., Dennehy, D., Hoffmeister, B., Conboy, K., & Becker, J. (2020). Industry demand for analytics: A longitudinal study. Paper presented at the 28th European Conference on Information Systems (ECIS), An Online AIS Conference. (VHB_3: B)
moreSchneider, J. (2020). Human-to-AI Coach: Improving Human Inputs to AI Systems. Paper presented at the Advances in Intelligent Data Analysis XVIII, Online.
moreSchneider, J. (2020). Locality-promoting representation learning. Paper presented at the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy.
moreSchneider, J., & Vlachos, M. (2020). Personalization of Deep Learning. Paper presented at the 3rd International Data Science Conference - iDSC2020. Data Science – Analytics and Applications, Austria.
moreDennehy, D., Conboy, K., Babu, J., Schneider, J., Handali, J., vom Brocke, J., Hoffmeister, B., & Stein, A. (2020). Adopting Learning Analytics to Inform Postgraduate Curriculum Design. Paper presented at the International Working Conference on Transfer and Diffusion of IT.
moreSchneider, J., Basalla, M., & Seidel, S. (2019). Principles of Green Data Mining. Paper presented at the Hawaii International Conference on System Sciences (HICSS), Hawaii, USA. (VHB_3: C)
moreSchneider, J., & Handali, J. (2019). Personalized explanation for machine learning: A conceptualization. Paper presented at the 27th European Conference on Information Systems, Stockholm & Uppsala, Sweden. (VHB_3: B)
moreMeske, C., Junglas, I., Schneider, J., & Jaakonmaeki, R. (2019). How Social is Your Social Network? Toward A Measurement Model. Paper presented at the International Conference on Information Systems (ICIS), Munich, Germany. (VHB_3: A)
moreSchneider, J., Handali, J. P., & vom Brocke, J. (2018). Increasing Trust in (Big) Data Analytics. Paper presented at the 30th International Conference on Advanced Information Systems Engineering (CAiSE) 2018: Advanced Information Systems Engineering Workshop, Tallin, Estonia.
moreBoesch, K., Mueller,Oliver, & Schneider, J. (2018). Emotional Contagion Through Online Newspapers. Paper presented at the European Conference on Information Systems (ECIS). (VHB_3: B)
moreSchneider, J., & Vlachos, M. (2018). Topic Modeling based on Keywords and Context. Paper presented at the SIAM International Conference on Data Mining (SDM).
moreSchneider, J., Weinmann, M., Schneider, C., & vom Brocke, J. (2017). Identifying Preferences Through Mouse Cursor Movements - Preliminary Evidence. Paper presented at the 25th European Conference on Information Systems, Guimarães, Portugal. (VHB_3: B)
moreSchneider, J., & Meske, C. (2017). Gender Differences in Enterprise Social Network Usage and Transformation over Time. Paper presented at the International Conference on Information Systems (ICIS). (VHB_3: A)
moreHarris, D. G., Schneider, J., & Su, H.-H. (2016). Distributed (\Delta 1)-Coloring in Sublogarithmic Rounds. Paper presented at the Symposium on the Theory of Computing (STOC).
moreSchneider, J., Bogojeska, J., & Vlachos, M. (2014). Solving Linear SVMs with Multiple 1D Projections. Paper presented at the Conference on Information and Knowledge Management (CIKM).
moreSchneider, J., & Vlachos,M. (2014). On Randomly Projected Hierarchical Clustering with Guarantees. Paper presented at the 2014 SIAM International Conference on Data Mining (SDM).
moreVlachos, M., & Schneider, J. (2013). Fast Parameterless Density-Based Clustering via Random Projections. Paper presented at the Conference on Information and Knowledge Management (CIKM).
moreSchneider, J., & Schmid, S. (2013). Optimal Bounds for Online Page Migration with Generalized Migration Costs. Paper presented at the IEEE International Conference on Computer Communications (INFOCOM).
moreVlachos, M., Wieczorek, A., & Schneider, J. (2012). Right-protected data publishing with hierarchical clustering preservation. Paper presented at the Conference on Information and Knowledge Management (CIKM).
moreBarenboim, L., Elkin,M, Pettie, S., & Schneider, J. (2012). The Locality of Distributed Symmetry Breaking. Paper presented at the Symposium on Foundations of Computer Science (FOCS).
moreEstler, H., Schneider, J., Nordio, M., Furia, C., & Meyer, B. (2012). Agile vs. Structured Distributed Software Development: A Case Study. Paper presented at the Conference on Global Software Engineering (ICGSE).
moreSchlegel, R., Obermeier, S., & Schneider, J. (2012). Structured System Threat Modeling and Mitigation Analysis for Industrial Automation Systems. Paper presented at the Symposium on Foundations of Computer Science (FOCS).
moreSchneider, J., & Wattenhofer, R. (2011). Trading Bit, Message, and Time Complexity of Distributed Algorithms Algorithm for Growth-Bounded Graphs. Paper presented at the Symposium on Distributed Computing (DISC).
moreSchneider, J., & Wattenhofer, R. (2010). A New Technique For Distributed Symmetry Breaking. Paper presented at the Principles of Distributed Computing (PODC).
moreSchneider, J., & Wattenhofer, R. (2010). What Is the Use of Collision Detection (in Wireless Networks)?. Paper presented at the Symposium on Distributed Computing (DISC).
moreHasenfratz, D., Schneider, J., & Wattenhofer, R. (2010). Transactional Memory: How to Perform Load Adaption in a Simple And Distributed Manner. Paper presented at the International Conference on High Performance Computing & Simulation (HPCS).
moreSchneider, J., & Wattenhofer, R. (2009). Coloring Unstructured Multi-Hop Networks. Paper presented at the Principles of Distributed Computing (PODC).
moreSchneider, J., & Wattenhofer, R. (2009). Bounds On Contention Management Algorithms. Paper presented at the Symposium on Algorithms and Computation (ISAAC).
moreSchneider, J. (2009). Lean and Fast Secure Multi-Party Computation: Minimizing Communication and Local Computation Using A Helper. Paper presented at the International Conference on Security and Cryptography (SECRYPT).
moreSchneider, J., & Wattenhofer, R. (2008). A Log-Star Distributed Maximal Independent Set Algorithm for Growth-Bounded Graphs. Paper presented at the Principles of Distributed Computing (PODC).
more
Schneider, J. (2024, June 11). Governance of Generative AI for Companies.
more