Reference
Breitinger, F., & Baier, H. (2012). Performance Issues About Context-Triggered Piecwise Hashing. Paper presented at the Digital Forensics and Cyber Crime.
Publication type
Paper in Conference Proceedings
Abstract
A hash function is a well-known method in computer science to map arbitrary large data to bit strings of a fixed short length. This property is used in computer forensics to identify known files on base of their hash value. As of today, in a pre-step process hash values of files are generated and stored in a database; typically a cryptographic hash function like MD5 or SHA-1 is used. Later the investigator computes hash values of files, which he finds on a storage medium, and performs look ups in his database. Due to security properties of cryptographic hash functions, they can not be used to identify similar files. Therefore Jesse Kornblum proposed a similarity preserving hash function to identify similar files. This paper discusses the efficiency of Kornblum's approach. We present some enhancements that increase the performance of his algorithm by 55% if applied to a real life scenario. Furthermore, we discuss some characteristics of a sample Windows XP system, which are relevant for the performance of Kornblum's approach.
Persons
Organizational Units
- Institute of Information Systems
- Hilti Chair for Data and Application Security