Referenz
Debortoli, S., Müller, O., & vom Brocke, J. (2014). Vergleich von Kompetenzanforderungen an Business-Intelligence- und Big-Data-Spezialisten. Eine Text-Mining-Studie auf Basis von Stellenausschreibungen. WIRTSCHAFTSINFORMATIK, 56(5), 315-328.
Abstract
Während sich die meisten wissenschaftlichen Studien zum Thema „Big Data“ mit den technischen Möglichkeiten zur Bewältigung von riesigen Datenmengen beschäftigen, sind empirische Untersuchungen in Bezug auf die von Fachleuten verlangten Kompetenzen für das Handling von Big Data bislang noch nicht durchgeführt worden. Gleichzeitig diskutiert man in Wissenschaft und Praxis heftig über die Unterschiede und Gemeinsamkeiten von Big Data (BD) einerseits und „traditionellem“ Business Intelligence (BI) andererseits. Der vorliegende Artikel beschreibt die Durchführung einer Latenten Semantischen Analyse (LSA) von Stellenanzeigen auf dem Online-Portal monster.com, um Informationen darüber zu gewinnen, welche Anforderungen Unternehmen an Fachkräfte in den Bereichen BD und BI stellen. Auf Basis einer Analyse und Interpretation der statistischen Ergebnisse der LSA wird eine Taxonomie von Kompetenzanforderungen für BD bzw. BI entwickelt. Die wichtigsten Ergebnisse der Untersuchung lauten: (1) für beide Bereiche, BD und BI, ist Businesswissen genauso wichtig wie technisches Wissen; (2) kompetent sein im Bereich BI bezieht sich vorwiegend auf Wissen und Fähigkeiten in Bezug auf die Produkte der großen kommerziellen Softwareanbieter, während im Bereich BD eher Wissen und die Fähigkeiten in Bezug auf die Entwicklung von Individualsoftware und die Anwendung statistischer Methoden im Vordergrund steht; (3) die Nachfrage nach Kompetenz im Bereich BI ist immer noch weitaus größer als die Nachfrage nach Kompetenz im Bereich BD; und (4) BD-Projekte sind gegenwärtig wesentlich humankapitalintensiver als BI-Projekte. Die Ergebnisse und Erkenntnisse der Studie können Praktikern, Unternehmen und wissenschaftlichen Einrichtungen dabei helfen, ihre BD- bzw. BI-Kompetenz zu bewerten und zu erweitern.
Publikationsart
Artikel in wissenschaftlicher Zeitschrift (2014)
Mitarbeiter
Prof. Dr. Jan vom Brocke
Dr. Oliver Müller
Stefan Debortoli
Einrichtungen
Institut für Wirtschaftsinformatik
Hilti Lehrstuhl für Business Process Management